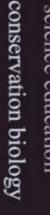
CITIZEN SCIENCE – LEARNING WITH AND FROM THE PUBLIC THROUGH CITIZEN SCIENCE: TOOLS FOR BUILDING CONNECTIONS

Yolanda Wiersma Associate Professor, Biology

Collaborators

- Dr. Jeffrey Parsons, Memorial University, Faculty of Business
- Dr. Roman Lukyanenko, U Sask,
 Edwards School of Business
- Dr. Max Liboiron, Memorial University, Department of Geography
- Dr. Gisela Wachinger, University of Stuttgart/DIALOGIK
- Matt McWilliams, MSc(Env) student

interdisciplinary

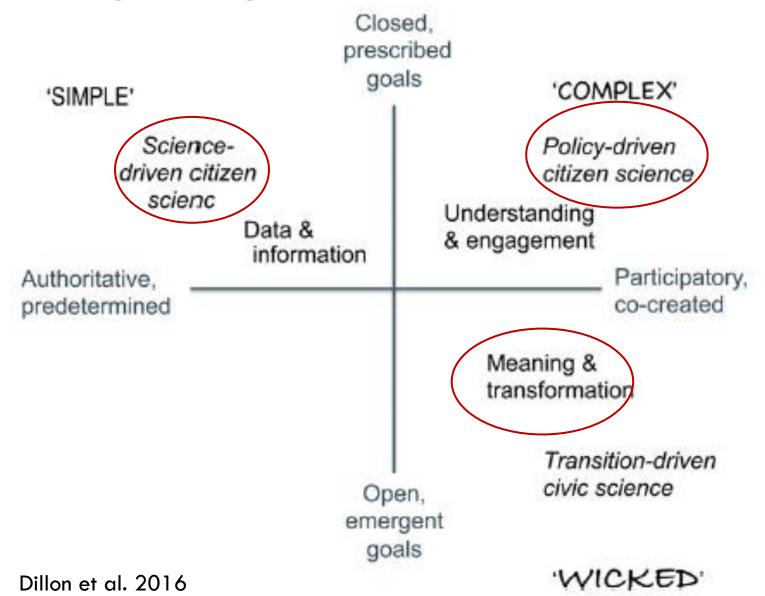

communication

experiment(

engage that some synchronous fun field

Zen Science

asynchronous inquiry
investigate
creativity environmental science distance learning creativity ecosystems xplore questions experiential



A new era of citizen science

Participatory Citizen Science

My own research on CS

- NLNature.com
 - Collaboration with Information Systems Scientists (Dr. Jeff Parsons and Dr. Roman Lukyanenko) on "Crowd IQ" (Crowd Information Quality)

Easier citizen science is better

Non-scientists are now participating in research in ways that were previously impossible, thanks to more web-based projects to collect and analyse data. Here we suggest a way to encourage broader participation while increasing the quality of data.

Participation may be passive, as when someone donates their computer's 'downtime' to projects such as SETI@home, or active, as when someone uses eBird to log birds they have spotted. Unfortunately, pird as oil-covered may be more valuable than asking them to guess what the species is. For such data to be used effectively, they need to be stored in a way that supports attributes rather than fixed, predetermined classes.

Jeffrey Parsons, Roman Lukyanenko and Yolanda Wiersma Memorial University of Newfoundland, Canada. jeffreyp@mun.ca

Nature (2011) 471: 37

Research Problem

- Major challenge in making effective use of citizen data is crowd data quality (DQ)
 - E.g., accuracy of a citizen science observation on eBird.org

data. "You don't necessarily know who is on the other end of a data point," she says. It could be a retired botany professor reporting on wildflowers or a pure amateur with an untrained eye.

As a result, it is difficult to guarantee the quality of the data. Scientists have to design their

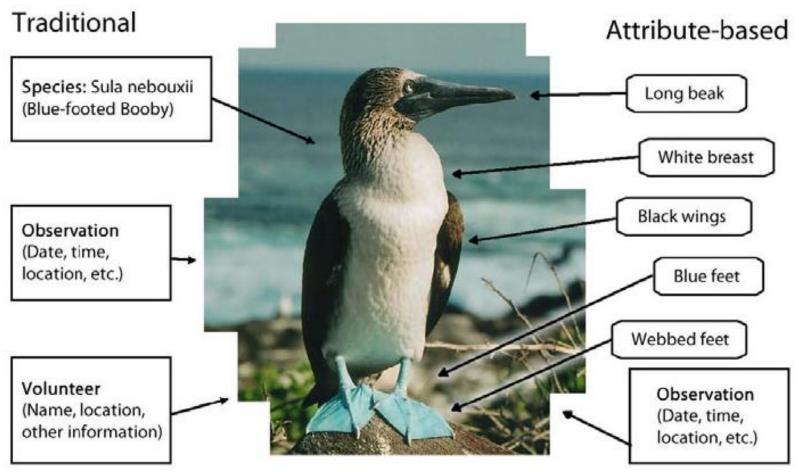
Prevailing Perspective on Crowd DQ

- Popular approaches to ensure DQ
 - Educate and train online users
 - Provide data collection instructions
 - "Clean" data post-hoc
- Focus on data consumers (e.g., scientists)
 - Dissuade contributors from providing data
 - Prevent contributors from communicating important local knowledge

Alternative Approach to DQ

- DQ from contributors' perspective
 - "the extent to which stored information represents the phenomena of interest to data consumers, as perceived by information contributors"
 - Use-agnostic
 - Contributor-centric
 - Cognizant of data consumers

Our Research Focus


- Minimizing participation constraints
- Increasing the <u>quantity and accuracy of data</u> generated
- Capturing data on unexpected organisms

Class-based vs. instance-based

Lukyanenko, Parsons & Wiersma (2011) Lecture Notes in Computer Science

Illustration of the problem

Incorrect guess ↓ accuracy

Any choice (incl. correct)

↓ instance completeness
(attribute loss)

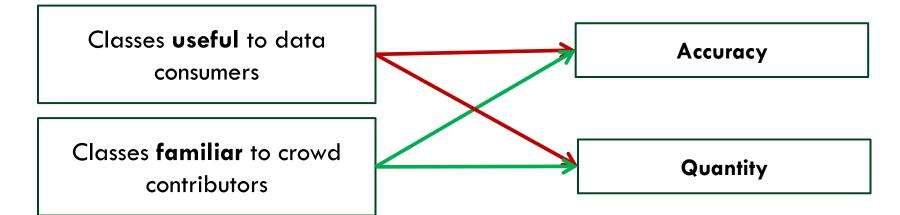
Experiment 1: Free form

- \square N=247 non-experts (141 female, 106 male)
 - 24 full-color images of plants and animals

- Task: What is it?
- Free-form responses

Experiment 1: Results

Useful classes

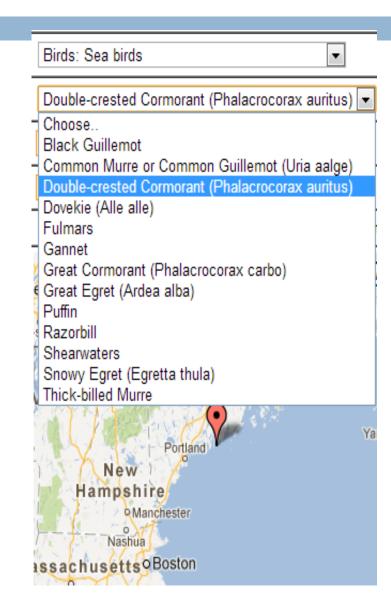

(e.g., great egret):

- 141 total
- □ 19.15% correct

Familiar classes

(e.g., bird)

- 1550 total
- 98.26% correct



avg. p < 0.001*

^{*} Based on Fisher's exact test; Sig with Bonferroni correction

Experiment 2: Fixed-choice

- With predefined classes
 - Species, useful to scientists
 - Generic, familiar to nonexperts
- \square N=77 non-experts
- Task: select class from predefined list

Experiment 2: Materials

"Useful" Condition

What is it? Select one:

- Arctic Tern
- Bonaparte's Gull
- Caspian Tern
- O Common Tern
- Herring Gull
- o Iceland Gull
- 0 Killdeer
- 0 Parasitic jaeger
- 0 Pomarine jaeger
- I don't know
- Other____

Cognitive psychology

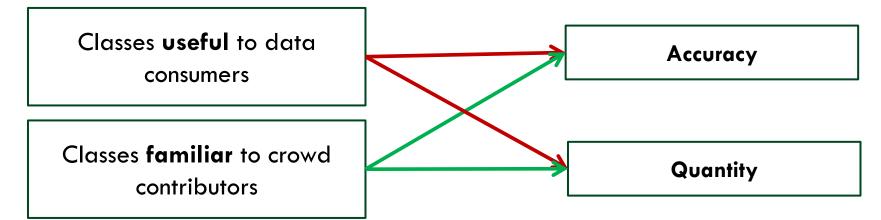
"Familiar" Condition

What is it? Select one:

- Animal
- O Common Tern
- o Iceland Gull
- 0 Killdeer
- 0 Seagull
- Shorebird
- 0 Tern
- Waterfowl
- 0 Bird
- I don't know
- Other_____

Experiment 2: Results

Useful classes


(e.g., great egret):

- 271 total
- □ 73 (24.84%) correct
- □ IDK, Other not used!

Familiar classes

(e.g., bird)

- 375 total
- □ 277 (73.88%) correct

Conclusions of initial experiments

- Accuracy, quantity of data declines when citizens are asked to comply with needs of scientists
- Accuracy does not necessarily increase when "familiar" options are included
 - Training no panacea!

Problem

- Data is highly variable, inconsistent
- □ Low precision: (rarely at species level)

Sighting Info

Observed: July 24, 2013 @ 1:45 PM

Posted on: August 17, 2013 @ 9:09 AM (diff: 24 days)

Comments:

I photographed this while I was on a Gatheralls boat tour of the Witless Bay islands.

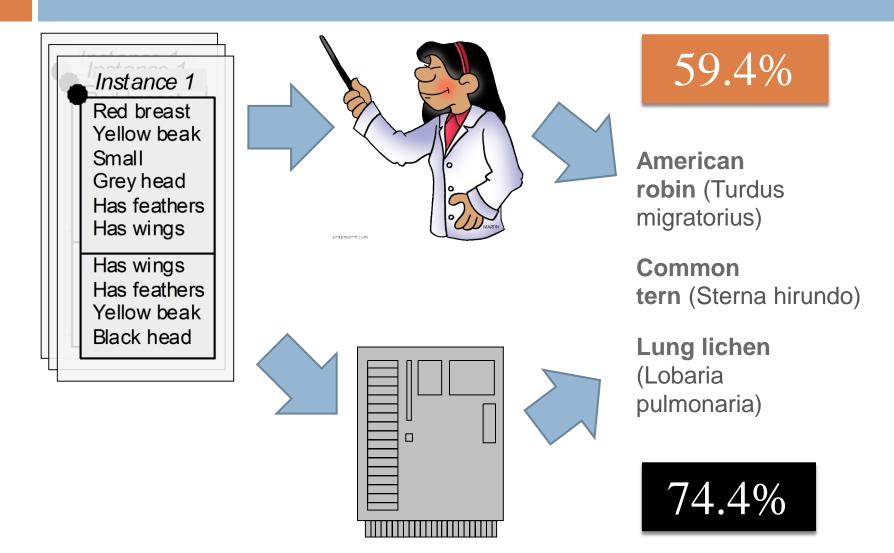
Sighting's Identification

- Sea bird

Sighting Info

Observed: July 10, 2013 @ 1:00 PM

Posted on: July 12, 2013 @ 9:41 AM (diff: 2 days)


Sighting's Identification

- Atlantic Puffin (Fratercula arctica)

Solution:

Apply AI / Analytics to IB Data

Using experts and Al to post-process data

Conclusions

- Use-agnostic, instance-based data has advantages for
 - Accuracy, Quantity of data, Ease of use, Participation, Discoveries
- Augmented with Artificial Intelligence/ Analytics
 - Can be made more consistent
 - Can achieve the desired level of specificity (e.g., species)

My own research on CS

□ Fogo Island Fishermen Project (with Dr. Max Liboiron

and Matt McWilliams)

Participatory citizen science

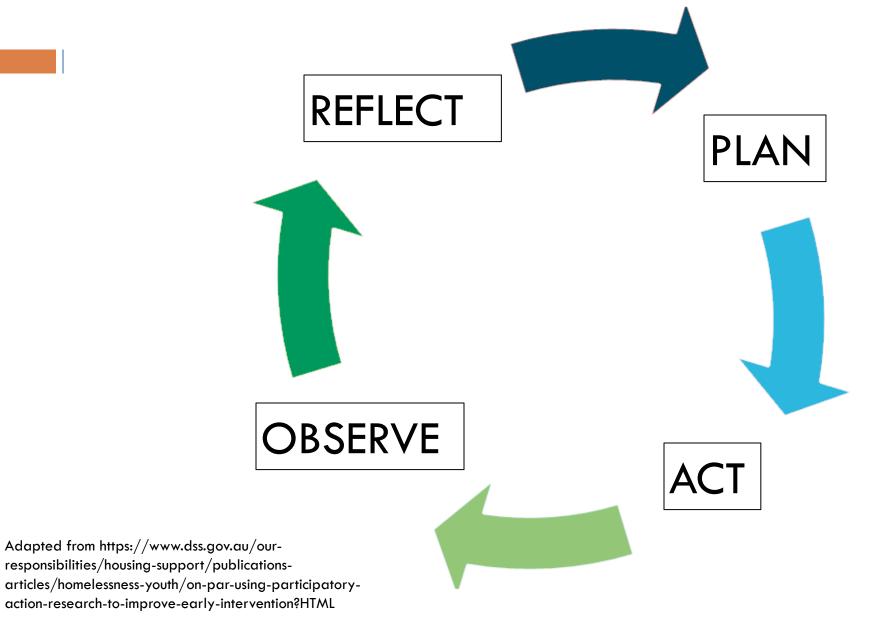
Photo credits: Phoebe Sengers

Acknowledgements

Fogo Island Research Team:

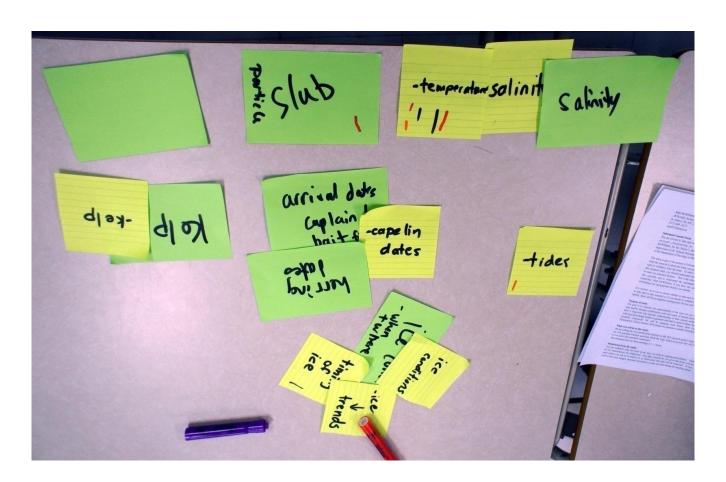
Don Best, Glen Best, Jerry Best, Rodney

Budden, Bernadette and Gerard Dwyer,


George Ford, Shawn Lynch, Aubrey and

Marie Payne, Gordon Payne, Austin Reid

Participatory Action Research



Participatory Citizen Science

The Research Question

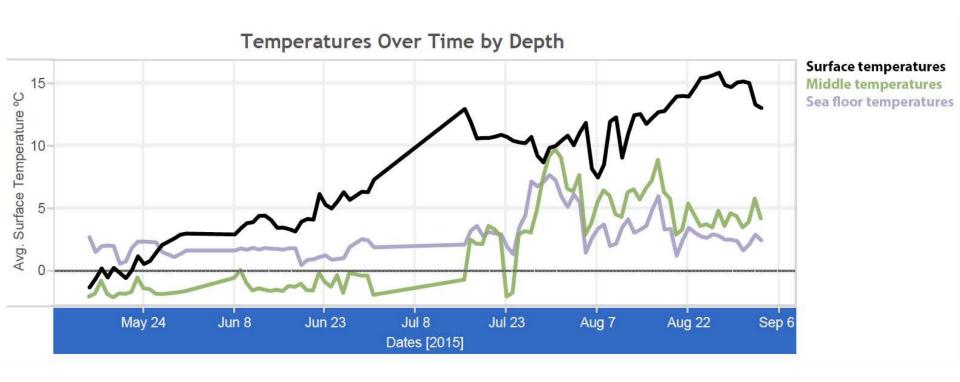
What effect does temperature have on different fisheries in terms of catch rates?

The Methods

Arrange 3 iBCod temperature loggers placed at:

1. The ocean surface

2. Halfway between the seafloor and ocean surface


3. At the seafloor attached to fishing gear

Participatory Analysis

Citizen Science?

What is the best use?

- what are the major needs that may be filled by citizen science?
- what can citizen science provide uniquely?

What is best practice?

look to research ON citizen science

BioBlitz

For more information

- Citizen Science Association (citizenscience.org)
- Cornell Lab
- citizenscientists.ca
- citizenscientistsleague.com
- citizensciencecenter.com

- □ I can share a link to a Dropbox folder
 - Key academic papers
 - List of resources
 - Extensive list of existing CS projects

Comments/Questions?

Thank you!

Yolanda Wiersma

Department of Biology, Memorial University

- www.nllandscapeecology.com
- ywiersma@mun.ca
- @YolandaWiersma